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Outline

• Data: quality, evaluation, scaling laws
• Models: Vision and Vision-Language Transformers
• Efficient Finetuning: Distillation, LoRA, Prompt Tuning
• Research: Model patching, model editing, explaining ICL
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Large-Scale Pretraining
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Training on a Web-Scale

• We have a very bad intuition
about how much diversity there is
in web-scale data

• In general, much more diversity
than we expect

• There are examples of general 
tasks such as translation

• language provides
a flexible way to specify tasks, 
inputs, and outputs all as a
sequence of symbols

• How do we use language to achieve
few-shot and zero-shot learning?

4A. Radford et al. “Language Models Are Unsupervised Multitask Learners.”



Few-Shot and Zero-Shot Learning

Given a large pretrained language model
• In-Context-Learning/Prompting: at inference time we give a 

description of the task, (optionally) followed by a sequence of 
examples

• No weights are updated

• Few-Shot: the model is given a few samples of the task as 
conditioning 

• One-Shot: a single example
• Zero-Shot: only the task description is given
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Examples

6T. Brown et al. “Language Models Are Few-Shot Learners.” NeurIPS 2020



Examples of Prompts

7T. Brown et al. “Language Models Are Few-Shot Learners.” NeurIPS 2020



LLMs are Few-Shot Learners

8T. Brown et al. “Language Models Are Few-Shot Learners.” NeurIPS 2020



Challenges

• Prompting requires rethinking the adaptation and finetuning of 
models

• It’s hard to evaluate LLMs zero-shot ability
• How can we ensure that the task is really unseen? 

• Still hard to control the model or estimate uncertainty
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Challenges in the Evaluation

• Github CoPilot memorized the solution
of many programming challenges

• Example: Project Euler #14
• A simple problem about the 

convergence of Collatz sequences
How to get your solution
• Add a comment with the link to project 

euler
• # 
https://projecteuler.net/proble
m=14

• Press tab or enter until the code is 
complete. Copilot will write the full 
solution
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# https://projecteuler.net/problem=14

# imports
import time

# Measure runtime
start = time.time()

# Variables
longest_chain = 0
longest_chain_start = 0

# Functions
def collatz(n):

chain = 1
while n != 1:

if n % 2 == 0:
n = n/2
chain += 1

else:
n = 3*n + 1
chain += 1

return chain

# Main
for i in range(1, 1000000):

chain = collatz(i)
if chain > longest_chain:

longest_chain = chain
longest_chain_start = i

print(longest_chain_start)

# Print runtime
print("--- %.2f seconds ---" %(time.time() - start))



Data and Scaling Laws
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Model Scale

12image from https://huggingface.co/blog/large-language-models



Training Large (Huge) Models

Training large models is very expensive
• You can train a single run (it cost M$)
• You would like to know the cost in advance, whether the 

performance improvements are worth the cost

Problems:
• How do we do model selection?
• How do we choose the model size?
• How much data do we need?
• What error will we get?
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Model Selection

• You can’t do it. A training is a single run
• If models become unstable recover from previous checkpoints
• Needs to account for machine failures (the model is trained on 

a cluster)
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Chinchilla Scaling Law

• Chinchilla Scaling Law: an empirical law that determines the 
loss given

• N: number of parameters of the model
• D: number of tokens in the dataset
• Three components: model error, data error, irreducible loss

15J. Hoffmann et al. “Training Compute-Optimal Large Language Models.” 2022



Compute-Optimal Models

16J. Hoffmann et al. “Training Compute-Optimal Large Language Models.” 2022



Compute-Optimal Models

• Larger models are not always better, you also need larger data
• Given a fixed computational budget and a dataset, you can find

the optimal model size
• The optimality is wrt to the loss and training cost. 

• Inference cost is ignored and it can be high due to the large model size 
suggested by the Eq.

• Unclear if the scaling law will hold for larger models
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How much data do we have?

If the trend continues
• high-quality language data will be exhausted soon; likely before 2026. 
• low-quality language data and image data will be exhausted only much 

later; between 2030 and 2050 (for low-quality language) and between 
2030 and 2060 (for images). 

18P. Villalobos et al. “Will We Run out of Data? An Analysis of the Limits of Scaling Datasets in Machine Learning.” 2022



19P. Villalobos et al. “Will We Run out of Data? An Analysis of the Limits of Scaling Datasets in Machine Learning.” 2022



Vision Transformer
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Attention

•  head  head 

•
 

• Transformers use multiple heads, each transformed by different linear projections

•

• Scaled dot-product attention
• Q query
• K keys
• V values
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Vision Transformer

22A. Dosovitskiy et al. “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.” 2021



Embedding Image Patches

• Split images in 16x16 patches
• Add positional embedding

• Learnable 1D embeddings
• Needed because attention is invariant to the patch position

• Once we have the 1D embeddings, we can use the Transformer 
like we do for text
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ViT Block

• MSA: Multiheaded Self-Attention
• LN: Layer Normalization
• GELU nonlinearity

•  

• ℓ ℓ ℓ

• ℓ ℓ ℓ

•
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• ⋅ × ×

• projects embedding into latent
space

• Image HxWxC
• Patch (flattened patch)
• D latent size dimension
•  is a learned embedding

and provides the final image 
representation at the last layer
(equivalent to BERT[class] 
token)



Results

25A. Dosovitskiy et al. 2021. “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.”



Vision-Language Models
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Motivation

• With LLM we can do zero-shot training with prompting
• We want to exploit language to encode visual information

• Language encodes a high-level understanding of images
• We have lots of captioned images that provide much more information 

than using the image alone

• We need to combine vision and language models

27



Vision-Language Pretraining with CLIP

• pre-training task: learn to map text captions with visual images
• zero-shot transfer: natural language is used to reference 

learned visual concepts (or describe new ones)

28A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



Contrastive Learning

• Objective: learn a latent representation 
space that is semantically meaningful (for 
downstream tasks)

• Example: in a downstream classification 
problem, we would like the examples to 
be linearly separable

• IDEA: similar images are close to each 
other, diverse images are far

• contrastive learning: compare and 
contrast pairs of images during training to 
learn good representations 



Contrastive Pretraining

• Supervised training is inefficient if we try to learn from 
<caption, image> pairs

• There is too much diversity in the possible images and captions
• It is very difficult to predict the exact image/captions of the current pair

• Solution: contrastive training
• Given a batch of <caption, image> pairs, predict which text caption

maps with which image among the NxN possibilites
• Learns a multi-modal embedding space where text and images are 

aligned

30A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



CLIP Pretraining

31A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



Zero-Shot Image Classification

• Given a number of classes {«dog», 
«cat», … }

• Create prompts: «this is an image of 
{class}»

• For each image, find the closest
prompt

• You can encode the text prompt and 
use its embedding to get a linear 
classification head

32A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



Zero-Shot Image Classification

• Ensembling: You can use multiple 
prompts for the same class:

• «a photo of a small {class}»
• «a photo of a big {class}»

• Prompt Engineering: different prompts 
can have different results

• E.g. «{class}» vs «a photo of {class}»
• Paper Results: (on ImageNet)

• ensemble 80 different context prompts 
(+3.5%) w.r.t. single default prompt

• prompt engineering and ensembling
improve (+5%)

• In general, ensembling and prompt 
engineering have a big impact

33A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



CLIP Pretraining is More Sample-Efficient

34A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



Robustness to Dataset Shift

35A. Radford et al. 2021. “Learning Transferable Visual Models From Natural Language Supervision.”



Efficient Finetuning
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Distillation - Alpaca

We can use large models to create 
data to train the smaller models
• 7B model trained from GPT3.5 

inputs
• Cheap to train

• 3 hours on 8 80GB A100s
• <600$ cloud cost

• Start from LLaMA (7B LLM)
• Finetune with

• 175 human-written instruction-
output pairs 

• 52K  additional pairs generated 
by GPT 3.5 using the human-
written samples as context

37https://github.com/tatsu-lab/stanford_alpaca



Prompt Tuning – Learning To Prompt (L2P)

• For classification problems, the 
prompts are fixed embedding
vectors that we compare to the 
image embedding

• Can we learn the prompt?
• Learning2Prompt:

• Continual learning method
• Fixed pretrained backbone
• Keep a prompt pool with <key, value> 

pairs
• Uses the key to select the prompt

38Z. Wang et al. “Learning to Prompt for Continual Learning.” CVPR 2022.



L2P – Prompt Selection

• asd

39Z. Wang et al. “Learning to Prompt for Continual Learning.” CVPR 2022.



L2P – Prompt Selection

• 𝒙
⊆[ , ]

Prompt Selection

• pretrained feature extractor gets query features
• key
• scoring function that matches image and prompts

•
𝐏,𝐊,

 
𝐊𝒙

Optimization Objective

•  ViT encoder
• classifier

40Z. Wang et al. “Learning to Prompt for Continual Learning.” CVPR 2022.



Efficient Finetuning – Low Rank Adaptation (LoRA)

• We can finetune only a small part 
of the model

• Represent the finetuned models as
with small (in memory 

size) 
• This allows us to easily train and 

store hundreds of finetuned models

• Low-Rank Parameter Update
•
• With × ×

41



Continual Pretraining
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Continual Pretraining

• Continual Pretraining
is the problem of 
efficiently updating a 
large pretrained model

• Forgetting Control 
Task: we don’t want to 
forget general 
knowledge

• Downstream Task: we 
want to improve on 
domain-specific tasks

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision."  2022. 43



Pretraining Results

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision."  2022. 44

Evaluation on the 
Forgetting Control Task

Forgetting is limited even with finetuning.
Dynamic vocabulary expansion (NT) slightly

improves the performance.

fast
adaptation

Self-supervised pretraining is more 
robust than supervised methods
(result for vision in the paper)



Self-Supervised CL

• Distillation loss maps
old representations in a 
new projected space

• SSL tricks such as heavy 
augmentations and SSL 
losses

• Linear probing
evaluation

A. Gomez-Villa et al. “Continually Learning Self-Supervised Representations With Projected Functional Regularization,” CLVISION ‘22
E. Fini et al. “Self-Supervised Models Are Continual Learners.” CVPR ‘22 45



CaSSLe – Self-Supervised CL

• We can also use KD to train SSL models
• SSL loss on new data + KD loss on old

embeddings

ℒ = ℒ 𝒛 , 𝒛 + ℒ 𝒛 , 𝒛
¯

 = ℒ 𝒛 , 𝒛 + ℒ 𝑔 𝒛 , 𝒛
¯

.

• A and B images, embeddings of new model 

•
¯

embedding of old model
• is used as the distillation loss
• is a projection network that maps from the new 

representation to the old ones
• Allows to update the representations and change

them

CaSSLe 2112.04215 (arxiv.org) 46



Large-Scale Pretraining

• self-supervised pretraining provides very general knowledge 
about large domains (vision, language)

• We can adapt them to solve new tasks with few (or zero) examples
• They are more robust compared to supervised models
• They are even more robust than finetuned models

47



Model Patching
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Community-developed and continually-improved models
- Incremental and cheaply-communicable updates
- Merging models
- Vetting community contributions
- Versioning and backward compatibility
- Modularity and distribution

Building Models like OSS

https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html



Model Patching

GOAL: we want to consolidate two pretrained models

• Given two models and trained on tasks T1 and T2

• Find a model that solves both T1 and T2

• The two models can have different architectures, initialization, 
training algorithm, tasks…

50



(nonlinear) Mode Connectivity

Mode Connectivity: the models (modes) are connected 
by a low-loss path.

• we construct continuous paths between minima of 
recent neural network architectures on CIFAR10 and 
CIFAR100.”

• “We observe the following trend: The deeper and 
wider an architecture, the lower are the saddles 
between minima until they essentially vanish for 
current-day deep architectures. 

• The more complex dataset CIFAR100 raises the 
barriers.” 

• AutoNEB: method for connecting minima from 
molecular statistical mechanics

F. Draxler et al. “Essentially No Barriers in Neural Network Energy Landscape,” 51



Simple Model Patching

Linear Mode Connectivity:

• Naive average: 

• Weighted average: 

How do we find the weights?
• (normalized) Fisher diagonal
• (normalized) gradients
• Optimizing on a validation set

52



Patching Vision-Language Models

G. Ilharco et al. «Patching open-vocabulary models by interpolating weights” NeurIPS 2022 53

- Open-vocabulary models are characterized by their ability to 
perform any image classification task (example: CLIP)
- based on text descriptions of the classes
PAINT also allows a single model to be patched on multiple tasks 
and improves with model scale. Furthermore, we identify cases of 
broad transfer, where patching on one task increases accuracy 
on other tasks 



Git-Rebasin

• IDEA: we can exploit DNN symmetries to find a «better alignment» 
between the models that allows to patch them via weight averaging
(remember: no barriers in loss)

• DNN Units can be permuted without changin the DNN output:

• Git-Rebasin: find the best unit permutations by matching weights or 
activations. Then, we can merge with the naïve average.

Ainsworth, S. K., et al. “Git Re-Basin: Merging Models modulo Permutation Symmetries”. 54



What are we missing?

Necessary conditions for mode connectivity are unclear
- initialization?

- Pretrained models are the best choice -> if the first part of the training 
is shared patching becomes much easier.

- Same init is better. Different init works for simple datasets?
- Width and depth? Wider is better, but is it always enough? How wide 

should it be? How quickly is it growing with dataset complexity?
- Optimizer? Adaptive vs non-adaptive

- Architecture? Transformers, residual connections, batchnorm…

55



Are Transformers Meta-
Learning Methods?
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In-Context Learning

• What is in-context learning (ICL) and why does it work so well?
• Is ICL even learning?
• Is it just an emergent property of large 

pretraining/data/architecture?

• IDEA: If ICL is a learning algorithm, then pretraining is a «meta-
learning» algorithm

57



Motivation – Learning to Learn

• Meta-learning: Can we optimize the learning algorithm to solve 
novel tasks (transfer, low-shot and fast adaptation, 
hyperparameter search)? a.k.a. Learning to learn

• train 

• Example: Optimization-based meta learning (MAML)
• ∗

(𝒯) 𝒯

• Learn the best init

58



Hypothesis: ICL is a form of SGD
• “we suggest that training Transformers on auto-regressive objectives is closely 

related to gradient-based metalearning formulations”
• “trained Transformers become mesa-optimizers i.e. learn models by gradient 

descent in their forward pass.”
• The paper provides a constructive proof of this behavior for regression problems

• Note that this means that maybe ICL is not a consequence of large-scale training, but of 
the Transformer architecture

Von Oswald, Johannes, et al. "Transformers learn in-context by gradient descent." International Conference on Machine Learning. PMLR, 2023. 59



Hypothesis: ICL is a form of SGD

• “We reverse-engineer Transformers trained on simple sequence modeling tasks, and find 
strong evidence that their forward pass implements two-step algorithms: (i) early self-
attention layers construct internal training datasets by grouping and copying tokens, and 
therefore implicitly define internal objective functions, (ii) deeper layers optimize these 
objectives to generate predictions.”

von Oswald, Johannes, et al. "Uncovering mesa-optimization algorithms in transformers." arXiv preprint arXiv:2309.05858 (2023). 60



Conclusion
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Take-Home Messages

• scale matters
• Be careful about the evaluation

• It’s easy to evaluate on the training set
• companies are not sharing many details about the models (evaluation, 

training data, number of parameters) 

• methods that we saw in the course are used (is slightly different 
forms) 

• distillation to reduce the size of the model
• zero-shot and few-shot techniques (e.g. prompting)
• finetuning (e.g. LoRA)
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